

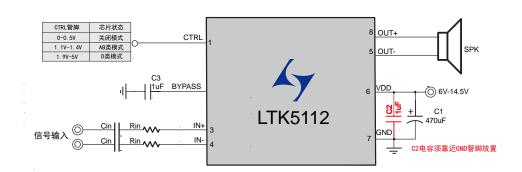
LTK5112 28W、F类、单声道功率音频放大器

■ 概述

LTK5112 是一款 4Ω-28W、差分结构,F 类音频 功率放大器,LTK5112 工作电压 6-14.5V,同时采 用差分输入结构,对噪声的干扰有很好的抑制作 用,LTK5112 的 F 类模式控制和关断控制集成 在一个脚位上,通过一个管脚控制芯片的开启、关闭、AB 类、D 类的自由切换,可以极大程度的 节省 IO 口,并且在 AB 类可以完全消除 EMI 的干扰,在 D 类放大器模式下可以提供高于 90%的效率,新型的无滤波器结构可以省去传统 D 类放大器的输出低通滤波器,LTK5112 采用 ESOP-8 封装。

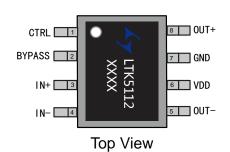
■ 应用

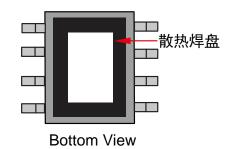
- 蓝牙音箱、智能音箱
- 导航仪、便携游戏机、扩音器
- 拉杆音箱、DVD、智能家居
- 各类 6-14.5V 供电音频产品


- 输入电压范围 6V-14.5V
- 无滤波的 D 类/AB 类放大器、低静态电流和低 EMI
- FM 模式无干扰
- 优异的爆破声抑制电路
- 超低底噪、超低失真
- 1% THD+N, VDD=12V, 8Ω+33UH 负载下 提供高达 8,5W 的输出功率
- 10% THD+N, VDD=12V, 8Ω+33UH 负载下 提 供高达 10. 2W 的输出功率
- 1% THD+N, VDD=12V, 4Ω+33UH 负载下提供 高达 15. 46W 的输出功率
- 10% THD+N, VDD=12V, 4Ω+33UH 负载下 提 供高达 20W 的输出功率
- 过温保护、短路保护

■ 封装

芯片型号	封装类型	封装尺寸
LTK5112	ESOP-8	


■ 特性


■ 典型应用图

■ 管脚说明及定义

管脚编号	管脚名称	10	功能
1	CTRL	Ι	使能控制。高电平开启,低电平关断,同时也是模式控制管脚
2	BYPASS	-	内部共模参考电压,接电容下地
3	IN+	Ι	模拟正向输入端
4	IN-	Ι	模拟反相输入端
5	OUT-	0	输出端负极
6	VDD	Р	电源正端
7	GND	G	电源负端
8	OUT+	0	输出端正极

■ 最大极限值

参数名称	符号	数值	单位
供电电压	$V_{ extsf{DD}}$	14.5V	V
存储温度	$T_{ ext{STG}}$	-40°C ~120°C	$^{\circ}$
结温度	$T_{ m J}$	160℃	$^{\circ}\!$

■ 推荐工作范围

参数名称	符号	数值	单位
供电电压Class_D (4Ω)	$ m V_{DD}$	6∼14.5V	V
工作环境温度	$T_{ ext{STG}}$	-40°C∼85°C	$^{\circ}\mathbb{C}$
结温度	$T_{ m J}$	_	$^{\circ}\mathbb{C}$

■ ESD 信息

参数名称	符号	数值	单位
人体静电	HBM	±2000	V
机器模型静电	CDM	±300	V

■ 基本电气特性

A_v=25dB, T_A=25℃, 无特殊说明的项目均是在VDD=9V, 4Ω+33uH条件下测试:

描述	符号		条件	最小值	典型值	最大值	单位
静态电流	${ m I}_{ extsf{DD}}$	VD	DD =9V, D类	-	10	17	mA
	1 DD	VDD) =9V, AB类		20	_	mA
静态底噪	Vn	VDD=9V , AV	=25DB, Awting		120		uV
信噪比	Nsr	VDD=9V , AV	=25DB, Awting		93		DB
D类频率	F_{SW}		VDD= 9V		520		kHz
输出失调电压	$V_{\rm os}$		$V_{IN}=0V$		10		mV
启动时间	$T_{ m start}$	Vdd=9V, E	Bypass=1uF		240		MS
增益	Av	D类模式	, R _{IN} =27k		≈25		DB
电源关闭电压	$\mathrm{VDD}_{\mathrm{sd}}$	CTRL	>2. 0V		<4.5		V
电源开启电压	$\mathrm{VDD}_{\mathrm{open}}$	CTRL>2. 0V			>5.5		V
关闭电压	$CTRL_{\mathrm{sd}}$				<0.5		V
AB类电压	CTRLAB			1. 1	1.2	1.4	V
D类电压	$CTRL_{D}$			1.9	2.5	5	V
过温保护	$O_{ ext{TP}}$				180		$^{\circ}$
++	1	I _{DS} =0.5A	P_MOSFET		15. 55		0
静态导通电阻	R_{DSON}	$V_{GS}=9V$	N_MOSFET		125		mΩ
D类内置输入电阻	$R_{\rm s}$				5K		КΩ
D类内置反馈电阻	R_{f}				580K		КΩ
AB类内置反馈电阻	$R_{\rm s}$				4.2K		KΩ
AB类内置反馈电阻	R_{f}				369K		ΚΩ
效率	η _c				90		%

● Class_D功率

 A_v =25dB, T_A =25℃, 无特殊说明的项目均是在VDD=9V, 4Ω 条件下测试:

参数	符号	测试条件		最小值	典型值	最大值	单位
		THD+N=10%, f=1kHz,	$V_{DD}=14V$		14		W
			V _{DD} =12	-	10. 2	_	
		$R_L=8\Omega$;	V _{DD} =9	_	5. 7	_	
			V _{DD} =7.4	-	3.82	_	
			V _{DD} =14V		11.6		
		THD+N=1%, f=1kHz,	V _{DD} =12		8. 51		W
		$R_L=8\Omega$;	V _{DD} =9		4. 76		
			V _{DD} =7.4		3. 2		
			V _{DD} =14.5V	_	28	_	
	P。	THD+N=10%, f=1kHz, R_L =4 Ω ;	V _{DD} =12V	_	20	_	W
			V _{DD} =9V	_	11.5	_	
输出功率			V _{DD} =7.4V	-	7. 7	-	
		THD+N=1%, f=1kHz, R_{L} =4 Ω ;	V _{DD} =14V		21. 1		
			V _{DD} =12V		15. 46		W
			V _{DD} =9V		8. 637		
			V _{DD} =7.4V		5. 78		
			V _{DD} =12V	_	23. 9	_	
		THD+N=10%, f=1kHz, $R_L=3 \Omega$;	V _{DD} =9V	_	14	_	
		N. 5 32 ;	V _{DD} =7.4V	_	9.3	_	
		THD+N=1%, f=1kHz,	V _{DD} =12V		18. 95		W
		$R_L=3 \Omega$;	V _{DD} =9V		10. 72		
			V _{DD} =7.4V		7. 18		
总谐波失真加噪声	THD+N	V_{DD} =12V, P_{o} =10W, R_{L} =4 Ω , AV =20DB	f=1kHz	-	0.02	-	%

■ 性能特性曲线

● 特性曲线测试条件(T_A=25°C)

描述	测试条件	编号	
Input Amplitude VS. Output Amplitude	VDD=12V,RL=4Ω+33UH ,Class_D	图1	
Input Amplitude VS. Output Amplitude	VDD=9V,RL=6Ω+33UH ,Class_D	图2	
	VDD=14.5V,RL=4 Ω +33UH,A $_{V}$ =20DB,Class_D		
Output Power VS. THD+N _Class_D	VDD=12V,RL=4Ω+33UH,A _V =20DB,Class_D	屋口	
	VDD=9V ,RL=4 Ω +33UH,A $_V$ =20DB,Class_D	图3	
	VDD=7.4V ,RL=4 Ω +33UH,A $_V$ =20DB,Class_D		
Output Power VS. THD+N Class D	VDD=9V ,RL=4 Ω ,A $_{V}$ =20DB , Class $_{L}$ D		
Output Fower V3. ITID+IN _Class_D	VDD=12V ,RL=4 Ω ,A $_{V}$ =20DB , Class $_{L}$ D	图4	
Output Power VS.THD+N Class AB	VDD=8V ,RL=4 Ω ,A $_{V}$ =20DB , Class_AB	图5	
Output Fower V3.111D+N_Class_AB	VDD=6V ,RL=4 Ω ,A $_{V}$ =20DB , Class_AB	图3	
Frequency VS.THD+N	RL=4Ω+33UH,THD=10%, Class_D	图6	
Input Voltage VS. Maximum Output Power	RL=4Ω+33UH,THD=10%, Class_D	图7	
Input Voltage VS.Power Crrent	VDD=6.0V-12V,Class_D	图8	
Frequency Response	VDD=12V,RL=4Ω,Class_D	图9	

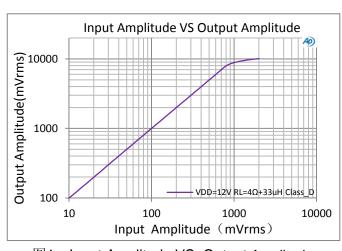


图1: Input Amplitude VS. Output Amplitude

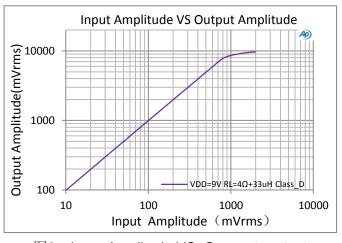


图2: Input Amplitude VS. Output Amplitude

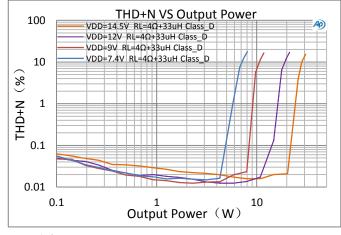


图3: THD+N VS .Output Power Class_D

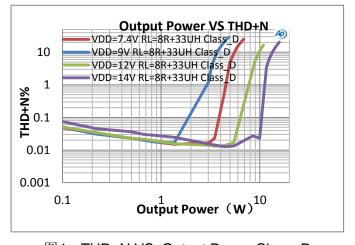


图4: THD+N VS .Output Power Class_D

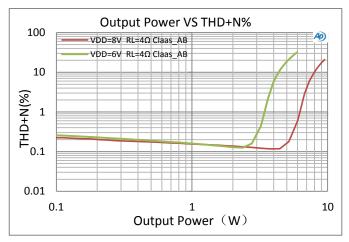


图5: THD+N VS. Output Power Class_AB

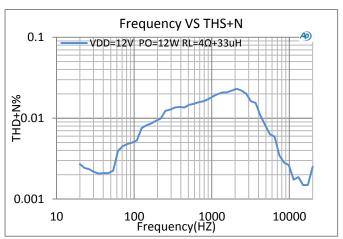


图6: Frequency VS.THD+N

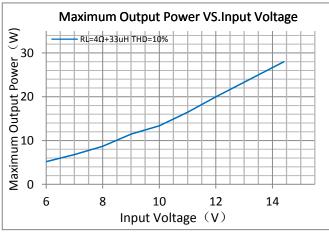


图7: Input Voltage VS. Maximum Output Power

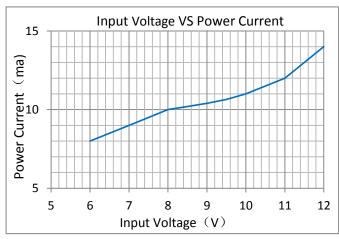


图8: Power Crrent VS. Suppy Voltage

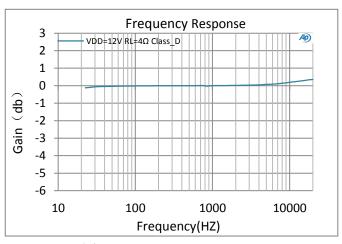


图9: Frequency Response

■ 应用说明

● CTRL管脚控制

CTRL管脚是芯片使能脚位,控制芯片关闭、D类模式、AB类模式的切换功能,CTRL输入对应的电压,芯片工作在对应的工作模式。CTRL管脚不能悬空。

CTRL管脚	芯片状态
<0.5V	关闭状态
1. 1V-1. 4V	AB类模式
1. 9V-5V	D类模式

● 功放增益控制

D类模式时输出为(PWM信号)数字信号, D类模式时输出其增益可通过R_{IN}调节。

$$A_{V} = \frac{580 \text{K}\Omega}{(R_{IN} + 5 \text{K}\Omega)}$$

Av为增益,通常用DB表示,上述计算结果单位为倍数、20Log倍数=DB。

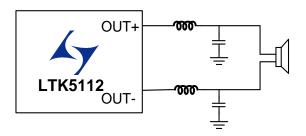
RIN电阻的单位为 $K\Omega$ 、580 $K\Omega$ 为内部反馈电阻 (R_F) , 5 $K\Omega$ 为内置串联电阻 (R_S) , RIN由用户 根据实际供电电压、输入幅度、和失真度定义。 如 RIN=43K时,=12.08倍、 A_V =21.64DB

AB类模式时输出为模拟信号,增益为:

$$A_{V} = \frac{369 \text{K}\Omega}{(R_{IN} + 4.2 \text{K}\Omega)}$$

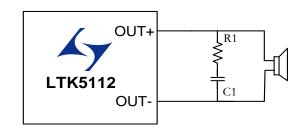
输入电容(CIN)和输入电阻(RIN)组成高通滤波器,其截止频率为:

$$f_C = \frac{1}{2\pi \times (R_{IN} + 5K) \times C_{IN}}$$


Cin电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的POPO声

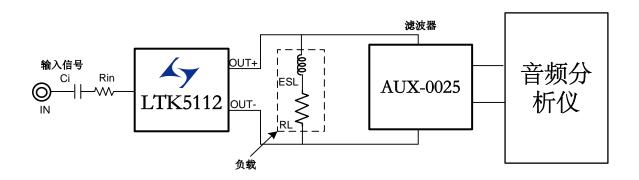
■ Bypass电容

Bypass电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时Bypass电容的大小会影响芯片的电源抑制比、噪声、以及POP声等重要性能。建议将该电容设置为1uf,因该Byp的充电速度比输入信号端的充电速度越慢,POP声越小。


● EMI 处理

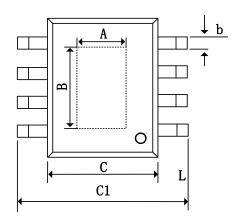
对于输出走线较长或靠近敏感器件时,建议加上 滤波电路,减小对周围其他电路的干扰,电感和电 容,能有效减小EMI。

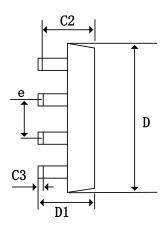
● RC缓冲电路

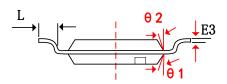

如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。电阻推荐使用: 2Ω-5Ω,电容推荐: 500PF-10NF。

■ 测试方法

在测试D类模式时必须加滤波器测试。AUX-0025为滤波器。为了测试数据精准并符合实际应用,在RL负载端串联一个电感,模拟喇叭中的寄生电感。




■ PCB设计注意事项


- ▶ 电源供电脚(VDD)走线网络中如有过孔必须使用多孔连接,并加大过孔内径,不可使用单个过孔直接连接。
- ➤ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效的抑制其他信号耦合的噪声。
- ▶ LTK5112 由于功率较大,芯片的底部散热片焊接在 PCB 板上,有助于芯片散热,以及地减小阻抗,在大电流时减少压降,提高功率,建议 PCB 使用大面积敷铜来连接芯片中间的散热片,并有一定范围的露铜,帮助芯片散热。
- ▶ LTK5112 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度在 0.5mm 以上。
- ▶ LTK5112 的 VDD 处的滤波电容需要尽可能的靠近芯片。

■ 芯片封装 ESOP-8

<i>→</i>	Dimensions In Millimeters			Dimensions In Inches		
字符 	Min	Nom	Max	Min	Nom	Max
A	2. 31	2. 40	2.51	0.091	0.094	0.098
В	3. 20	3. 30	3. 40	0. 126	0. 129	0. 132
b	0.33	0.42	0.51	0.013	0.017	0.020
С	3.8	3.90	4.00	0. 15. 50	0. 15. 54	0. 15. 57
C1	5.8	6.00	6. 2	0. 228	0. 235	0. 244
C2	1. 35	1.45	1.55	0.053	0.058	0.061
C3	0.05	0. 12	0. 15. 5	0.004	0.007	0.010
D	4. 70	5.00	5. 1	0. 185	0. 190	0. 200
D1	1. 35	1.60	1. 75	0.053	0.06	0.069
е	1. 270 (BSC)				0.050 (BSC)	
L	0.400	0.83	1. 27	0.016	0.035	0.050

ESOP-8

声明:北京联辉科电子技术有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。 北京联辉科电子技术有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题.