

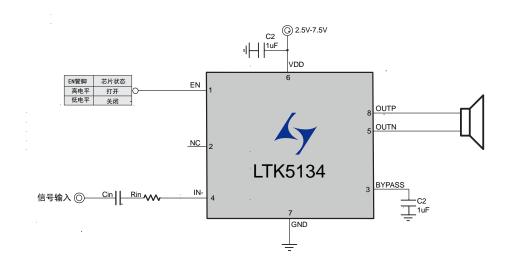
LTK5134 耐压7.5V D类、单声道音频放大器

■ 概述

LTK5134 是一款 5V-4Ω-3.1W、单端输入单声道 D 类音频功率放大器。LTK5134 采用高耐压工艺,耐压可达 7.5V,LTK5134 具有芯片低功耗功能只需使用一个 IO 口,可控制功放开启、关闭随意切换。在 D 类放大器模式下可以提供高于 90%的效率,新型的无滤波器结构可以省去传统 D 类放大器的输出低通滤波器。LTK5134 采用 MSOP-8 封装。

■ 应用

- 蓝牙音箱、智能音箱
- 导航仪、便携游戏机
- 拉杆音箱、DVD、扩音器、MP3、MP4
- 智能家居等各类音频产品

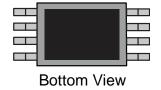

■ 特性

- 输入电压范围 2.5V-7.5V
- 无滤波的 D 类类放大器、低静态电流和低 EMI
- FM 模式无干扰
- 优异的爆破声抑制电路
- 超低底噪、超低失真
- 10% THD+N, VDD=5V, 8Ω 负载下提供高达 1.5W 的输出功率
- 10% THD+N, VDD=5V, 4Ω 负载下提供高达
 3.3W 的输出功率
- 10% THD+N, VDD=7V, 8Ω 负载下 提供高达2.85W 的输出功率
- 10% THD+N, VDD=6V, 4Ω 负载下 提供高达
 4.9W 的输出功率
- 过温保护、短路保护

■ 封装

芯片型号	封装类型	封装尺寸
LTK5134	MSOP-8	

■ 典型应用图



■ 管脚说明及定义

Top View

管脚编号	管脚名称	10	功能
1	EN	Ι	关断控制。高电平开启,低电平关闭。
2	NC	-	NC
3	BYPASS	Ι	内部共模参考电压,接电容下地
4	IN-	Ι	模拟输入端,反相
5	OUTN	0	输出端负极
6	VDD	Р	电源正端
7	GND	10	电源负端
8	OUTP	0	输出端正极

■ 最大极限值

参数名称	符号	数值	单位
供电电压	$V_{ extsf{DD}}$	7. 5V (MAX)	V
存储温度	$T_{ ext{STG}}$	-65°C-150°C	$^{\circ}\mathbb{C}$
结温度	$T_{ m J}$	160℃	$^{\circ}\mathbb{C}$

■ 推荐工作范围

参数名称	符号	数值	单位
供电电压	$ m V_{DD}$	3-7V	V
工作环境温度	$T_{ ext{STG}}$	-40°C to 85°C	$^{\circ}\!\mathbb{C}$
结温度	${ m T}_{ m J}$	_	$^{\circ}\!\mathbb{C}$

■ ESD 信息

参数名称	符号	数值	单位
人体静电	HBM	± 2000	V
机器模型静电	CDM	±300	V

■ 基本电气特性

 A_V =20dB, T_A =25℃, 无特殊说明的项目均是在VDD=5V, Class_D类4Ω+33uH条件下测试:

描述	符号	测记	条件	最小值	典型值	最大值	单位
静态电流	$\mathrm{I}_{ ext{ iny DD}}$	VDD =	5V	-	6	_	mA
			_	_		-	mA
关断电流	$I_{ ext{SHDN}}$	VDD=3V	to 5 V	_	<10		uA
静态底噪	Vn	VDD=5V , AV	=20DB, Awting		120		uV
D类频率	F_{sw}	VDD=	5V		470		kHz
输出失调电压	V_{os}	$V_{IN}=0$	V		10		mV
启动时间	$T_{\rm start}$	Vdd=5V, H	Bypass=1uF		150		ms
增益	Av	R _{IN} =	=22k		≈20		dB
电源关闭电压	Vdd_{EN}	EN	V=1		<1.7		V
电源开启电压	$Vdd_{\scriptsize{open}}$	EN	EN=1		>2.5		V
EN开启电压	EN _{open}				>2.0		V
EN关断电压	$\mathrm{EN}_{\mathrm{sd}}$				<0.9		V
过温保护	$O_{ extsf{TP}}$				180		$^{\circ}\mathbb{C}$
<u> </u>	D	I _{DS} =0.5A	P_MOSFET		150		mΩ
静态导通电阻	$R_{ extsf{DSON}}$	$V_{GS}=4.2V$	N_MOSFET		120		
内置输入电阻	$R_{\rm s}$	•			7. 5		kΩ
内置反馈电阻	R_{f}				195		kΩ
效率	η _C				91		%

● Class_D功率

A_v=20dB, T_A=25℃, 无特殊说明的项目均是在VDD=5V, 4Ω条件下测试:

参数	符号	测试条件		最小值	典型值	最大值	单位
		THD+N=10%,	$V_{DD}=7V$	-	11	-	
		$f=1kHz$, $R_L=2\Omega$;	V _{DD} =6V	ı	8. 1	1	W
			$V_{DD}=5V$		5.8		W
			V _{DD} =4.2V		4		
		THD+N=10%,	$V_{DD}=7V$	ı	6. 4	ı	
		$f=1kHz$, $R_L=4\Omega$;	V _{DD} =6V		4.9		
输出功率			$V_{DD}=5V$		3. 3		W
	P_{o}		V _{DD} =4.2V	ı	2.4	1	
		THD+N=10%,	$V_{DD}=7V$	-		-	
		$f=1kHz$, $R_L=8\Omega$;	V _{DD} =6V				W
			V _{DD} =5V				W
			V _{DD} =4.2V				
总谐波失真加噪声	THD+N	$V_{DD}=5VP_o=1.0W, R_L=4\Omega$	f=1kHz		0.03		%

■ 性能特性曲线

● 特性曲线测试条件(T_A=25°C)

描述	测试条件	编号
Input Amplitude VS. OutputPower	V_{DD} =5V,R _L =4 Ω +33uH, RL=4 Ω , Class_D	图1
THD+N VS .Output Power Class_D	V_{DD} =7V, R_L =2 Ω +15uH, A_V =20dB, Class_D	
	V_{DD} =6V, R_L =2 Ω +33uH, A_V =20dB, Class_D	图2
	V_{DD} =5V, R_L =2 Ω +33uH, A_V =20dB, Class_D	
	V_{DD} =4.2V, R_L =2 Ω +33uH, A_V =20dB, Class_D	
	V_{DD} =7V, R_L =4 Ω +33uH, A_V =20dB, Class_D	
	V_{DD} =6V, R_L =4 Ω +33uH, A_V =20dB, Class_D	图3
	V_{DD} =5V, R_L =4 Ω +33uH, A_V =20dB, Class_D	
	V_{DD} =4.2V, R_L =4 Ω +33uH, A_V =20dB, Class_D	
OutputPower VS. Suppy Voltage	$R_L=2\Omega+15uH$,THD=10%,, Class_D	图4
	R_L =4 Ω +33uH,THD=10%,THD=1%, Class_D	图5
Frequency VS.THD+N	V_{DD} =5V,R _L =4 Ω +33uH,A _V =20dB,Po=1W,Class_D	图6
Frequency Response	R _L =4 Ω+33uH, Class_D	图7

● 特性曲线图

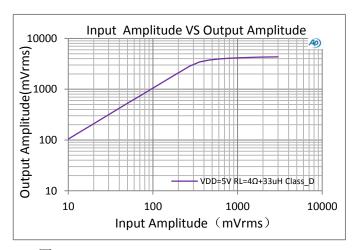


图1: Input Amplitude VS. Output Amplitude

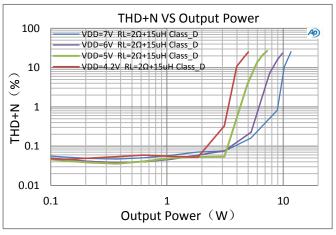


图2: THD+N VS .Output Power Class_D

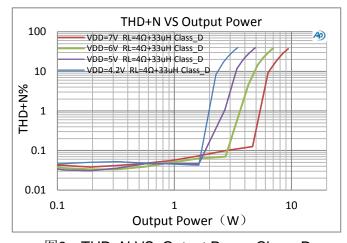


图3: THD+N VS .Output Power Class_D

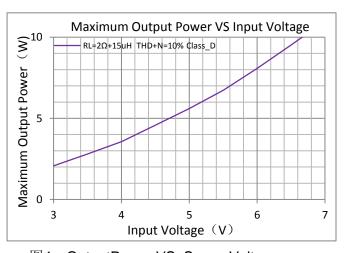


图4: OutputPower VS. Suppy Voltage

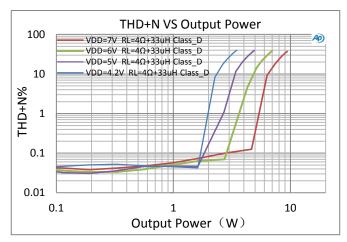


图3: THD+N VS .Output Power Class_D

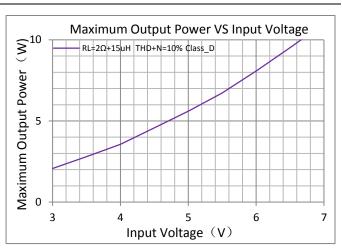


图4: OutputPower VS. Suppy Voltage

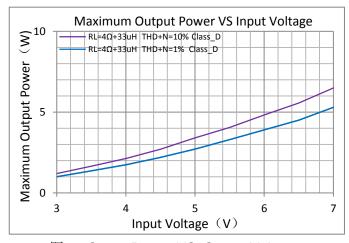


图5: OutputPower VS. Suppy Voltage

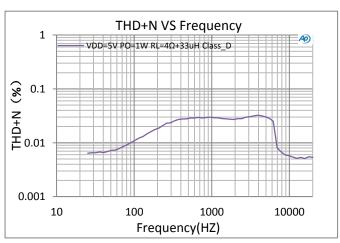


图6: Frequency VS.THD+N

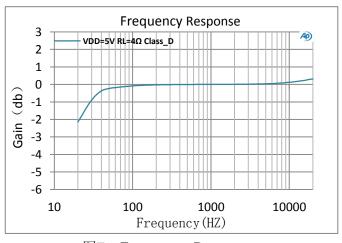


图7: Frequency Response

■ 应用说明

● EN管脚控制

LTK5134 EN管脚为高电平时,功放芯片打开,正常 工作,。EN管脚为低电平时,功放芯片关断。EN管 脚不能悬空

EN管脚	芯片状态
低电平	关闭状态
高电平	打开状态

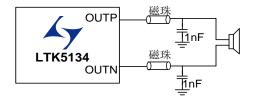
● 功放增益控制

D类模式时输出为(PWM信号)数字信号,类输出为模拟信号,其增益均可通过R_{IN}调节。

$$A_{V} = 2 \times \frac{195 \text{K}\Omega}{(R_{IV} + 7.5 \text{K}\Omega)}$$

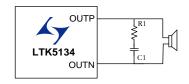
A_v为增益,通常用DB表示,上述计算结果单位为倍数、20Log倍数=DB。

RIN 电阻的单位为 $K\Omega$ 、195 $K\Omega$ 为内部反馈电阻 (R_F) , 7.5 $K\Omega$ 为内置串联电阻 (R_S) , RIN 由用户根据实际供电电压、输入幅度、和失真度定义输入电容 (CIN) 和输入电阻 (RIN) 组成高通滤波器,其截止频率为:

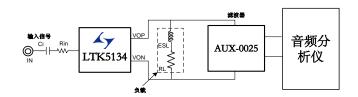

$$f_C = \frac{1}{2\pi \times (R_{IN} + 7.5K) \times C_{IN}}$$

● Bypass电容

Byp电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时Byp电容的大小会影响芯片的电源抑制比、噪声、以及POP声等重要性能。建议将该电容设置为1uf,因该Byp的充电速度速度比输入信号端的充电速度越慢,POP声越小。


EMI处理

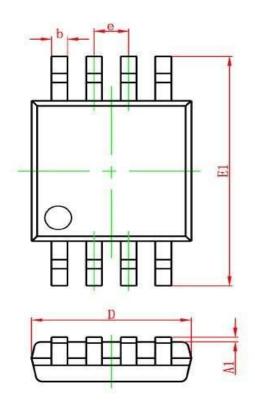
对于输出走线较长或靠近敏感器件时,建议加上磁 珠和电容,能有效减小EMI。器件靠近芯片放置

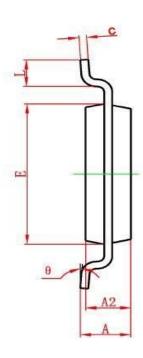

■ RC缓冲电路

如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。电阻推荐使用: 2Ω - 5Ω ,电容推荐:500PF-10NF。

■ 测试方法

在测试D类模式时必须加滤波器测试。AUX-0025 为滤波器,为了测试数据精准并符合实际应用, 在RL负载端串联一个电感,模拟喇叭中的寄生电 感。




■ PCB设计注意事项

- ▶ 电源供电脚(VDD)走线网络中如有过孔必须使用多孔连接,并加大过孔内径,不可使用单个过孔直接连接,电源管脚滤波电容尽量靠近芯片管脚放置。
- ▶ 输入电容(Cin)、输,走线最好使用包地方式,可以有效的入电阻(Rin)尽量靠近功放芯片管脚放置抑制其他信号耦合的噪声。

■ 芯片封装 MSOP-8

0 1 1	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	0. 820	1. 100	0. 032	0.043
A1	0. 020	0. 150	0.001	0.006
A2	0. 750	0. 950	0.030	0.037
b	0. 250	0. 380	0.010	0.015
С	0.090	0. 230	0.004	0.009
D	2. 900	3. 100	0. 114	0. 122
е	0.650)(BSC)	0.026	6(BSC)
E	2. 900	3. 100	0.114	0.122
E1	4. 750	5. 050	0. 187	0. 199
L	0. 400	0. 800	0.016	0. 031
θ	O°	6°	O°	6°

声明:北京联辉科电子技术有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。 北京联辉科电子技术有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题