

Ultra-Fast High PSRR Low Noise Output Current, Low-Dropout Regulator

Features

Operating Voltage: 1.5V-7.0VHigh PSRR: 90dB@1KHz

Output Voltage Accuracy: 1%

 Output Voltage: 1.0V,1.2V,1.5V,1.8V,2.5V,2.8V,3.0V,3.3V,4.0V,4.2V and 5.0V Optional Fixed

Low Dropout Voltage:42mV@100mA

Maximum Output Current: 500mA

• Excellent Line and Load Regulation

Over-Temperature Protection

Current Limiting Protections

Short Circuit Protections

ESD Rating (HBM): 8kV

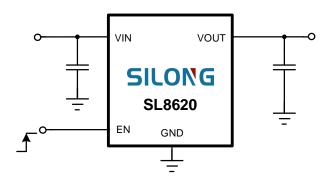
 Lead Free and Green Device Available (RoHS Compliant), Available in SOT23, SOT23-5L, SOT89-3 and DFN1x1-4L Packages

Applications

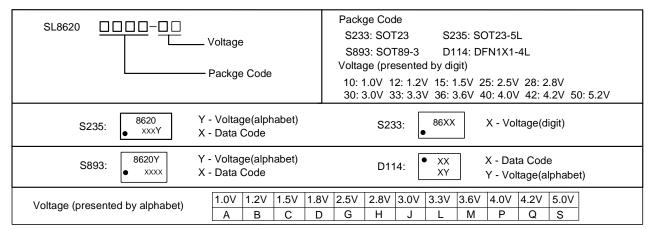
- Battery-Powered Devices
- Reference Voltage Sources
- Other Low Voltage Power Suppliers

General Description

The SL8620 is a positive voltage regulator with high accuracy, low noise, high speed, low drop-out voltage regulator with Chip Enable Pin, high ripple rejection and fast discharge function.


The SL8620 is designed specifically for applications where high PSRR is a critical parameter. This device maintains low IQ consumption and low noise even in dropout mode.

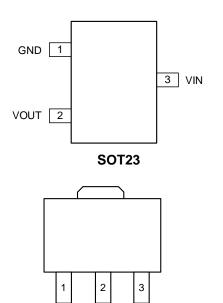
The SL8620 has an output voltage from 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 4.0V, 4.2V and 5.0V or other voltages applicable as customer specified.


The SL8620 has the current limiter's fold-back circuit operates as a short circuit protection as well as the output current limiter for the output pins.

The SL8620 is available in SOT23, SOT23-5, SOT89-3 and DFN1x1-4L packages.

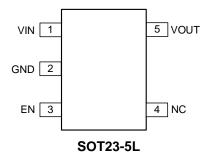
Typical Application Circuit

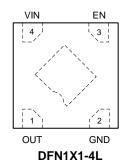
Order and Marking Information



Note: SILONG lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish, which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. SILONG lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature.

SILONG reserves the right to make changes to improve reliability or manufacturability without notice and advise customers to obtain the latest version of relevant information to verify before placing orders.

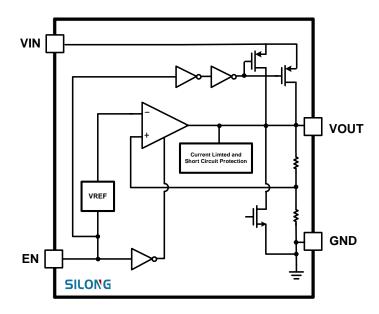

Pin Configuration



VOUT

VIN

SOT89-3


Pin Function Description

GND

PIN Number			SYMBOL	DESCTRIPTION	
SOT23	SOT23-5L	SOT89-3	DFN1X1-4L		
1	1	2	4	VIN	Power Supply Input
12	2	1	2, EP	GND	Ground
	3		3	EN	Chip Enable
	4			NC	Not Connected
2	5	3	1	VOUT	Output

Block Diagram

Absolute Maximum Ratings (Note1)

Symbol	Parameter	Rating	Unit		
Vin	Supply Voltage (VDD to GND)	-0.3 to 8.0	V		
Vout	VOUT Pin Voltage		-0.3 to (Vin+0.3)	V	
		SOT23-5	450		
В	Maximum Dawar Dissination	DFN1X1-4L	380	m\\/	
P _d	Maximum Power Dissipation	SOT23	400	mW	
		SOT89-3	600		
		SOT23-5	278		
DTD	Package Thermal Resistance θJA	DFN1X1-4L	328	20044	
PTR		SOT23	312	°C/W	
	SOT89-3		208		
TJ	Junction Temperature Range	-40 to +150			
T _{STG}	Storage Temperature Range		-40 to +150	°C	
T _{SDR}	Soldering Temperature Range	260			

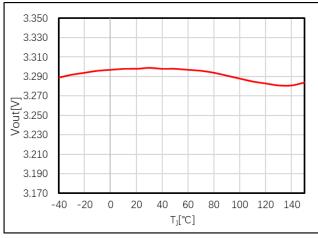
Note 1. Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operation above these absolute maximum ratings may cause degradation or permanent damage to the devices. These are stress ratings only and do not necessarily imply functional operation below these limits

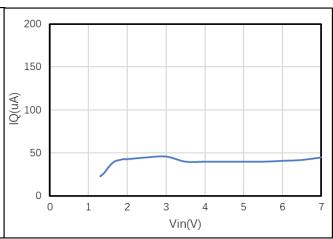
Recommended Operating Conditions

Symbol	Items	Value	Unit
Vin	Vin Supply Voltage	1.6 to 7.0	V
T _{OPT}	Operating Temperature	-40 to +85	°C

Electrical Characteristics

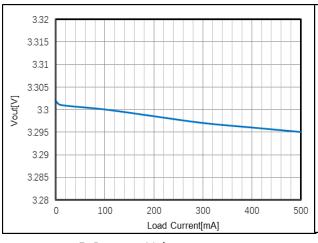
 $V_{\text{IN=}} \ V_{\text{OUT}} + 1V, \ V_{\text{OUT}} = 3.3V, \ C_{\text{IN=}} \ C_{\text{OUT}} = 1uF, \ T_{\text{A=}} \ 25^{\circ}C \ (unless \ otherwise \ specified)$

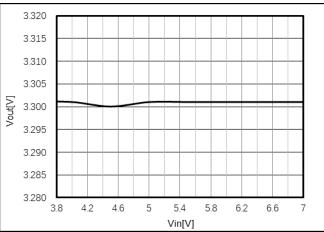

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.6		7	V
Vuvlo	UVLO threshold				1.2		V
Vouт	Output Accuracy	I _{OUT} =1mA		-1.5		1.5	%
I _{LIM}	Current Limit	V _{IN} =5V		500	700		mA
ΙQ	Quiescent Current	VIN=5V, VEN=5V,	No Load		40	60	μΑ
I _{SHD}	Shutdown Current	V _{EN} =0V			0.01	0.1	μΑ
		I _{OUT} =100mA			42		
V_{DROP}	Dropout Voltage	I _{OUT} =300mA		130		mV	
	I _{OUT} =500mA			230		İ	
SLINE	Line Regulation	V _{IN} = V _{OUT} +1.0V to 7V, I _{OUT} =1mA			1	10	mV
S _{LOAD}	Load Regulation	V _{IN} = V _{OUT} +1V, I _{OUT} =1mA~500mA			10		mV
Ishort	Short Current	Vout=0V			100		mA
V _{ENH}	EN High Voltage	V _{IN} = V _{OUT} +0.5V to 5.5V, I _{OUT} =1mA		1.4			V
VENL	EN Low Voltage	VIN= VOUT +0.5V	to 5.5V, I _{OUT} =1mA			0.5	V
T _{START}	Startup Time	V _{EN} low to high to	о V _{оит} =95%		25		μS
			Freq=217Hz		92		
PSRR	Power Supply Rejection Ratio	I _{OUT} =10mA	Freq=1kHz		90		dB
		Freq=10kHz			80		
V _{NOISE}	Output Noise Voltage	Freq from 10Hz to 100KHz,			50		μV_{RMS}
Tc	Output Voltage Temperature Coefficient	I _{OUT} =10mA, T _A = -40 to 85°C			±0.1		mV/°C
T _{SD}	Overheat Protection	Shut down when temperature increasing			150		့



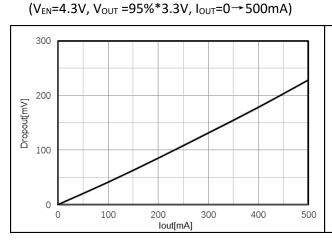
Characteristic curve test condition ($T_A=25^{\circ}$)

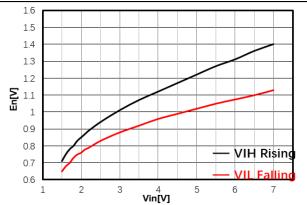
 $\label{eq:control_state} \begin{array}{c} 1.~V_{OUT}~vs~T_{J}\\ (V_{IN}\text{=}4.3V,~V_{OUT}~\text{=}3.3V,~I_{OUT}\text{=}10\text{mA}) \end{array}$


 $\begin{array}{c} \text{2. I}_Q \text{ vs V}_{IN} \\ \text{(V}_{OUT} = & \text{3.3V, I}_{OUT} = & \text{0mA)} \end{array}$



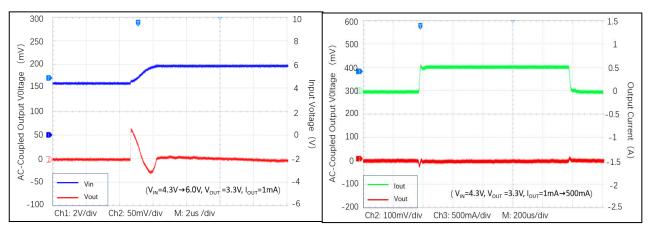
3. Load Regulation ($V_{\rm IN}$ =4.3V, $V_{\rm OUT}$ =3.3V, $I_{\rm OUT}$ =0 \rightarrow 500mA)

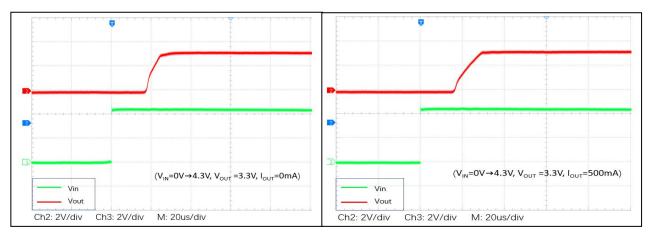

4. Line Regulation (V_{IN} =3.8V \rightarrow 7.0V, V_{OUT} =3.3V, I_{OUT} =1mA)



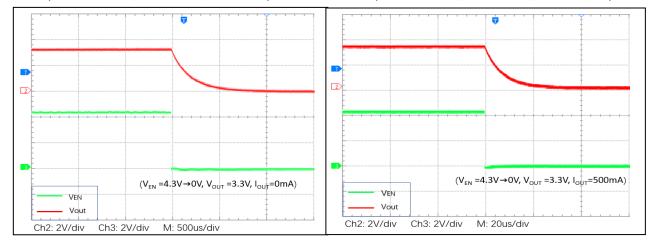
5. Dropout Voltage

6. V_{EN} Thresholds vs V_{IN}

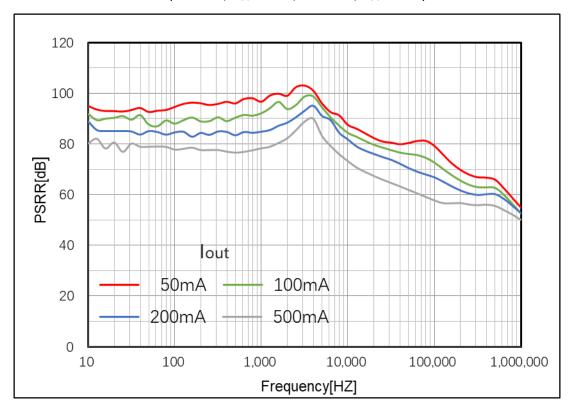



7. Line Transient $(V_{IN}=4.3V\rightarrow6.0V, V_{OUT}=3.3V, I_{OUT}=1mA)$

8. Load Transient (V_{IN}=4.3V, V_{OUT} =3.3V, I_{OUT}=1→500mA)


9. Start-Up $(V_{IN}=0V\rightarrow 4.3V, V_{OUT}=3.3V, I_{OUT}=0mA)$

10. Start-Up $(V_{IN}=0V\rightarrow 4.3V, V_{OUT}=3.3V, I_{OUT}=500mA)$


11. Shut-Down (V_{EN} =4.3V \rightarrow 0V, V_{OUT} =3.3V, I_{OUT} =0mA)

12.Shut-Down (V_{EN} =4.3V \rightarrow 0V, V_{OUT} =3.3V, I_{OUT} =500mA)

 $13. \ PSRR \\ (V_{IN}=4.3V, \ V_{OUT}=3.3V, \ C_{IN}=none, \ C_{OUT}=1uF)$

Application Information

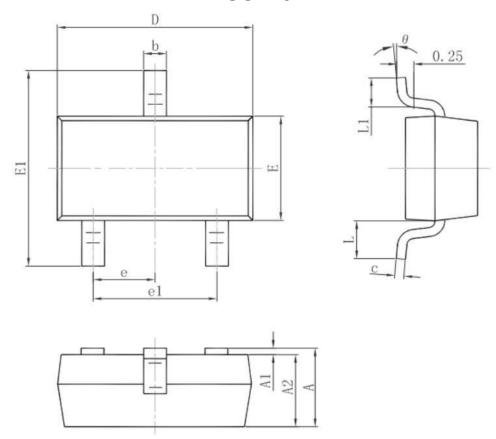
Input Capacitor Selection

The input capacitors used with the SL8620 must be carefully selected for regulator stability and performance. Using a capacitor whose value is >1uF one the SL8620 input and amount of capacitance can be increased without limit. The input capacitor must be located no more than 0.5-inch distance from the input pin of the IC and retured to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR provides better PSRR and line-transient response.

Output Capacitor Selection

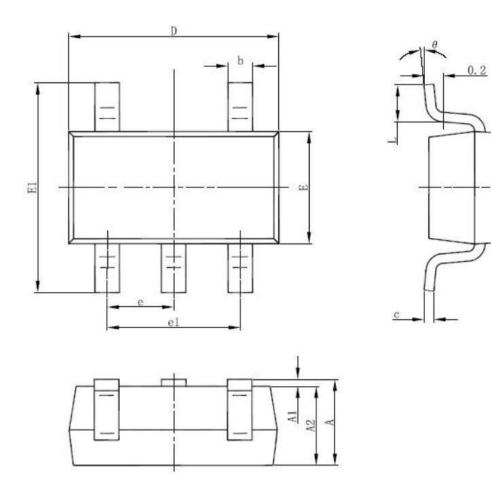
The SL8620 requires surface-mount multi-layer ceramic capacitors. These capacitors are small, inexpensive, and have very low ESR (<150hm typical). Tantalum capacitors, and aluminum electrolytic capacitors generally are not recommended for use with SL8620 due to their high ESR compared to ceramic capacitors.

For most applications, ceramic capacitors with an X7R or X5R temperature characteristic are preferred for use with the SL8620. These capacitors have tight capacitance tolerance(as good as $\pm 10\%$) and hold their value over temperature (X7R: $\pm 15\%$ over -55°C to 125°C;X5R: $\pm 15\%$ over -55°C to 85°C)

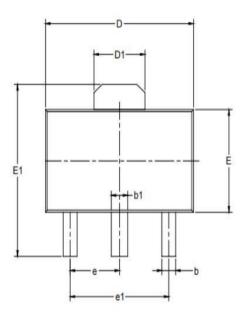

Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The ouput capacitor should be located no more than 0.5-inch distance from the Vout Pin of the SL8620 and returned to a clean analog ground.

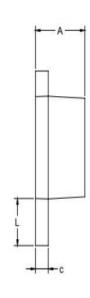
Layout Considerations

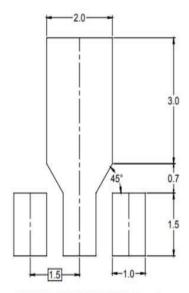
To improve AC performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for Vin and Vout, with each ground plane connected only at the GND pin of the device. A true ground plane and short connections to all capacitors will improve performance and ensure proper regulation under all conditions.


SOT23

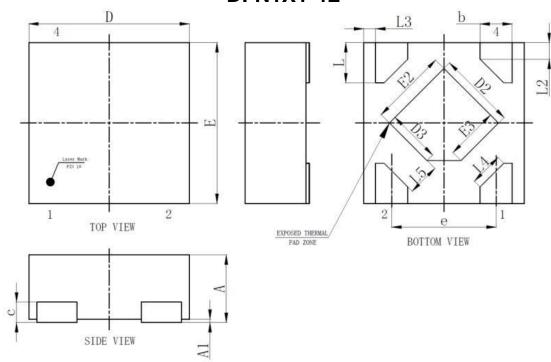
Complete	Dimensions	In Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP.	0.037 TYP.	
e1	1.800	2.000	0.071	0.079
L	0.550	REF.	0.022	REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°


SOT23-5L




0 1 1	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(B	SC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT89-3



RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550	REF	0.061	REF
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP		0.060	TYP
e1	3.000	TYP	0.118 TYP	
L	0.900	1.200	0.035	0.047

DFN1X1-4L

SYMBOL	MILLIMETER				
STMBOL	MIN	NOM	MAX		
A	0.35	140	0.40		
Al	0.00	0.02	0.05		
b	0. 15	0. 20	0, 25		
c	1	0. 127REF			
D	0.95	1.00	1. 05		
D2	0.38	0.48	0. 58		
D3	0.23	0.33	0.43		
e	0. 65BSC				
Е	0.95	1.00	1.05		
E2	0.38	0.48	0.58		
E3	0. 23	0.33	0.43		
L	0. 20	0.25	0.30		
L2	0.103REF				
L3	0.075REF				
L4	0.208REF				
L5	0.200REF				