

Ultra-Low IQ 650nA, 400mA Output Current, Low-Dropout Regulator

Features

Operating Voltage: 1.6V-7.0V

Ultra-Low Power Consumption: 650nA(Type)

Output Voltage Accuracy: 1%

Output Voltage:

1.0V,1.2V,1.5V,1.8V,2.5V,2.8V,3.0V,3.3V,4.0V,4.2V and 5.0V Optional Fixed

Low Dropout Voltage:450mV@300mA/3.3V

Maximum Output Current: 400mA

• Low Temperature Coefficient

• Current Limiting Protections

Short Circuit Protections

• Stable with 1uF Output Capacitor

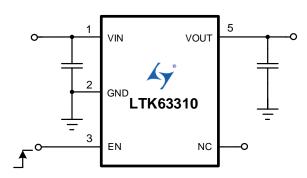
 Lead Free and Green Device Available (RoHS Compliant), Available in SOT23, SOT23-5L, SOT89-3 and DFN1x1-4L Packages

Applications

- Wearables electronics
- Battery-Powered Devices
- Reference Voltage Sources
- Building Security & Video Surveillance Devices
- Thermostat, Smoke and heat detectors

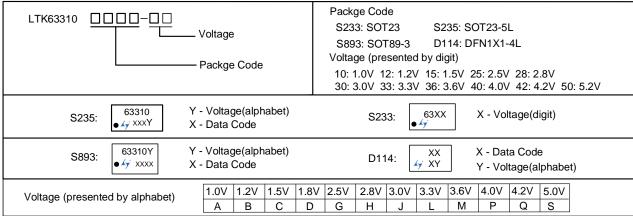
General Description

The LTK63310 is an ultra-low 650nA quiescent current low-dropout linear regulator (LDO) that can source maximum 400mA with good transient performance.


The LTK63310 is designed specifically for applications where very-low quiescent current is a critical parameter. This device maintains low IQ consumption even in dropout mode to further increase the battery life.

The LTK63310 has an output voltage from 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 4.0V, 4.2V and 5.0V or other voltages applicable as customer specified.

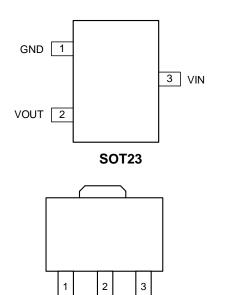
The LTK63310 has the current limiter's fold-back circuit operates as a short circuit protection as well as the output current limiter for the output pins.


The LTK63310 is available in SOT23, SOT23-5, SOT89-3 and DFN1x1-4L packages.

Typical Application Circuit

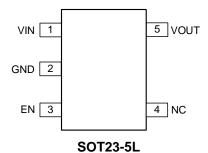
Note: EN must NOT be floating

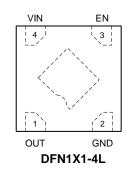
Order and Marking Information



Note: LTKCHIP lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish, which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. LTKCHIP lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature.

LTKCHIP reserves the right to make changes to improve reliability or manufacturability without notice and advise customers to obtain the latest version of relevant information to verify before placing orders.

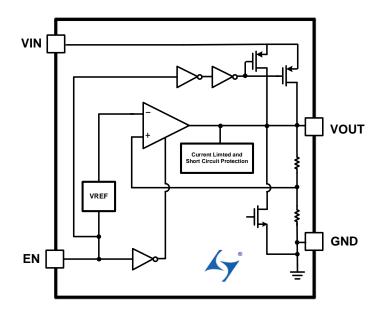

Pin Configuration



VOUT

VIN

SOT89-3


Pin Function Description

GND

PIN Number			SYMBOL	DESCTRIPTION	
SOT23	SOT23-5L	SOT89-3	DFN1X1-4L		
1	1	2	4	VIN	Power Supply Input
12	2	1	2, EP	GND	Ground
	3		3	EN	Chip Enable
	4			NC	Not Connected
2	5	3	1	VOUT	Output

Block Diagram

Absolute Maximum Ratings (Note1)

Symbol	Parameter	Rating	Unit	
Vin	Supply Voltage (VDD to GND)	-0.3 to 9.0	\	
Vout	VOUT Pin Voltage		-0.3 to (Vin+0.3)	V
		SOT23-5	400	
D	Mayirayra Dayyar Diaginatian	DFN1X1-4L	450	\^/
P _d	Maximum Power Dissipation	SOT23	350	mW
		SOT89-3	550	
		SOT23-5	285	
DTD	Package Thermal Resistance θ _{JA}	DFN1X1-4L	280	20044
PTR		SOT23	300	°C/W
		SOT89-3	175	
TJ	Junction Temperature Range	-40 to +150		
Tstg	Storage Temperature Range		-40 to +150	°C
T _{SDR}	Soldering Temperature Range	260		

Note 1. Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operation above these absolute maximum ratings may cause degradation or permanent damage to the devices. These are stress ratings only and do not necessarily imply functional operation below these limits

Recommended Operating Conditions

Symbol	Items	Value	Unit
Vin	Vin Supply Voltage	1.6 to 7.0	V
Торт	Operating Temperature	-40 to +85	°C

Electrical Characteristics

VIN= VOUT +1V, VOUT =3.3V, CIN= COUT=1uF, TA= 25°C (unless otherwise specified)

Symbol	Parameter	Test Co	ndition	Min.	Тур.	Max.	Unit	
V _{IN}	Input Voltage			1.6		7	V	
V_{UVLO}	UVLO threshold				1.2		V	
Vouт	Output Accuracy	I _{OUT} =1mA		-1.0		1.0	%	
ILIM	Current Limit	V _{IN} =5V		410	530		mA	
lα	Quiescent Current	VIN=5V, VEN=5V,	, No Load		0.65	1	μА	
I _{SHD}	Shutdown Current	V _{EN} =0V				0.1	μА	
		I _{OUT} =100mA			100			
V_{DROP}	Dropout Voltage	I _{OUT} =300mA			450		mV	
		I _{OUT} =400mA			850			
SLINE	Line Regulation	V _{IN} = V _{OUT} +0.5V to 5.5V, I _{OUT} =1mA			0.15	0.3	%/V	
S _{LOAD}	Load Regulation	V _{IN} = V _{OUT} +1V, 1mA< I _{OUT} >400mA			0.0035	0.006	%/mA	
I _{SHORT}	Short Current	V _{OUT} =0V			90		mA	
Venh	EN High Voltage	V _{IN} = V _{OUT} +0.5V to 5.5V,		1.5			V	
V_{ENL}	EN Low Voltage	I _{OUT} =1mA				0.8	V	
TSTART	Startup Time	V _{EN} low to high t	о Vоит =95%		800		μS	
			Freq=217Hz		53			
PSRR	Power Supply Rejection Ratio	I _{OUT} =10mA	Freq=1kHz		50		dB	
			Freq=10kHz		48			
V _{NOISE}	Output Noise Voltage	Freq from 10Hz to 100KHz,			100		μV _{RMS}	
Tc	Output Voltage Temperature Coefficient	I _{ОUT} =10mA, Т _А = -40 to 85°С			0.5		mV/°C	
T_{SD}	Overheat Protection	Shut down when temperature increasing			150		°C	

Characteristic curve test condition (TA=25 $^{\circ}$)

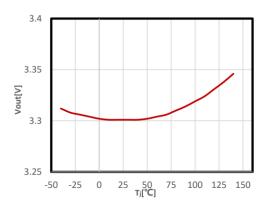


Figure 1. Vout vs VIN=5V, IOUT=10mA

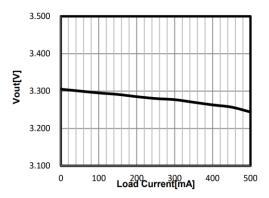


Figure 3. V_{OUT} vs Load Current

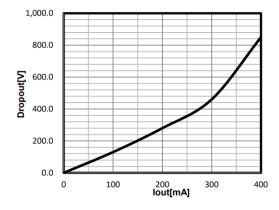


Figure 5. Dropout Voltage vs Load Current

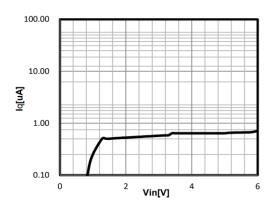


Figure 2. I_Q vs V_{IN}

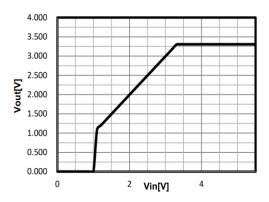


Figure 4. V_{OUT} vs V_{IN}

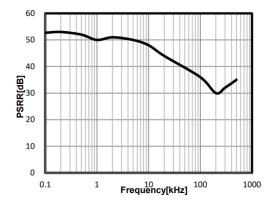


Figure 6. PSRR

Application Information

Input Capacitor Selection

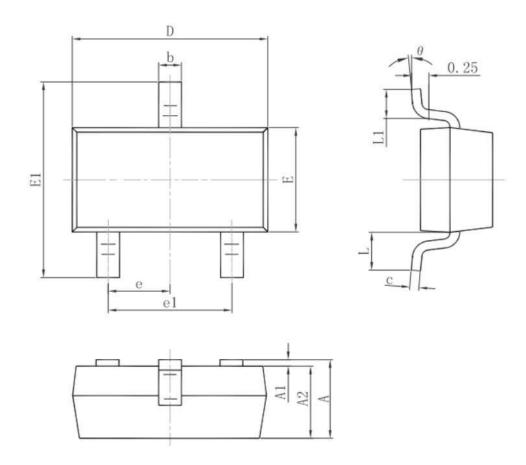
The input capacitors used with the LTK63310 must be carefully selected for regulator stability and performance. Using a capacitor whose value is >1uF one the LTK63310 input and amount of capacitance can be increased without limit. The input capacitor must be located no more than 0.5-inch distance from the input pin of the IC and retured to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR provides better PSRR and line-transient response.

Output Capacitor Selection

The LTK63310 requires surface-mount multi-layer ceramic capacitors. These capacitors are small, inexpensive, and have very low ESR (<150hm typical). Tantalum capacitors, and aluminum electrolytic capacitors generally are not recommended for use with LTK63310 due to their high ESR compared to ceramic capacitors.

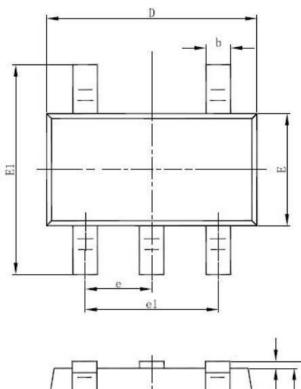
For most applications, ceramic capacitors with an X7R or X5R temperature characteristic are preferred for use with the LTK63310. These capacitors have tight capacitance tolerance(as good as \pm 10%) and hold their value over temperature (X7R: \pm 15% over -55°C to 125°C;X5R: \pm 15% over -55°C to 85°C)

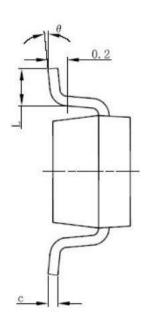
Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The ouput capacitor should be located no more than 0.5-inch distance from the Vout Pin of the LTK63310 and returned to a clean analog ground.

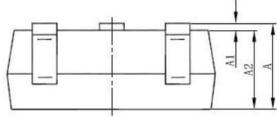

Layout Considerations

To improve AC performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for Vin and Vout, with each ground plane connected only at the GND pin of the device. A true ground plane and short connections to all capacitors will improve performance and ensure proper regulation under all conditions.

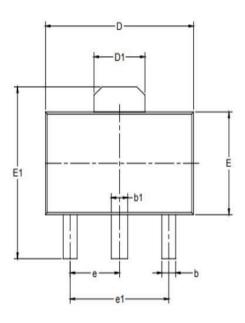
Packaging Information

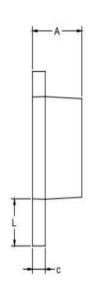

SOT23

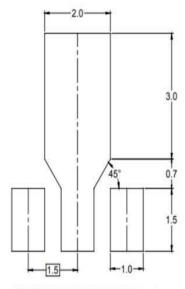



Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP.	0.037 TYP.	
e1	1.800	2.000	0.071	0.079
L	0.550 REF.		0.022	REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

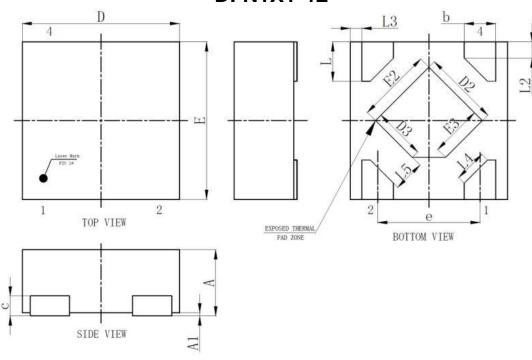
SOT23-5L






Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(B	SC)	0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT89-3



RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF		0.061	REF
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP		0.060	TYP
e1	3.000 TYP		0.118	TYP
L	0.900	1.200	0.035	0.047

DFN1X1-4L

SYMBOL	MILLIMETER					
31 MBOL	MIN	NOM	MAX			
A	0.35	7 4 0	0, 40			
Al	0.00	0.02	0.05			
b	0. 15	0.20	0, 25			
c	1	0. 127REF				
D	0.95	1.00	1.05			
D2	0.38	0.48	0. 58			
D3	0.23	0.33	0.43			
e	0. 65BSC					
E	0.95	1.00	1.05			
E2	0.38	0.48	0.58			
E3	0. 23	0.33	0.43			
L	0. 20	0.25	0. 30			
L2	0.103REF					
L3	0.075REF					
L4	0.208REF					
L5	0.200REF					